Urea and urine concentrating ability in mice lacking AQP1 and AQP3.

نویسندگان

  • Dan Zhao
  • Lise Bankir
  • Liman Qian
  • Dayu Yang
  • Baoxue Yang
چکیده

Aquaporin-1 (AQP1) and aquaporin-3 (AQP3) water channels expressed in the kidney play a critical role in the urine concentrating mechanism. Mice with AQP1 or AQP3 deletion have a urinary concentrating defect. To better characterize this defect, we studied the influence of an acute urea load (300 mumol ip) in conscious AQP1-null, AQP3-null, and wild-type mice. Urine was collected and assayed every 2 h, from 2 h before (baseline) to 8 h after the urea load. Mice of all genotypes excreted the urea load in approximately 4 h with the same time course. Interestingly, despite their low baseline, the AQP3-null mice raised their urine osmolality and urea concentration progressively after the urea load to values almost equal to those in wild-type mice at 8 h. In contrast, urine non-urea solute concentration did not change. Urine volume fell in the last 4 h to about one-fourth of basal values. AQP1-null mice increased their urine flow rate much more than AQP3-null mice and showed no change in urine osmolality and urea concentration. The urea load strongly upregulated urea transporter UT-A3 expression in all three genotypes. These observations show that the lack of AQP3 does not interfere with the ability of the kidney to concentrate urea but impairs its ability to concentrate other solutes. This solute-selective response could result from the capacity of AQP3 to transport not only water but also urea. The results suggest a novel role for AQP3 in non-urea solute concentration in the urine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upregulation of urea transporter UT-A2 and water channels AQP2 and AQP3 in mice lacking urea transporter UT-B.

The UT-B urea transporter is the major urea transporter in red blood cells and kidney descending vasa recta. Humans and mice that lack UT-B have a mild urine-concentrating defect. Whether deletion of UT-B altered the expression of other transporter proteins involved in urinary concentration was tested. Fluorescence-based real-time reverse transcription-PCR and Northern blot analysis showed upre...

متن کامل

Mice with targeted disruption of the acyl-CoA binding protein display attenuated urine concentrating ability and diminished renal aquaporin-3 abundance.

The acyl-CoA binding protein (ACBP) is a small intracellular protein that specifically binds and transports medium to long-chain acyl-CoA esters. Previous studies have shown that ACBP is ubiquitously expressed but found at particularly high levels in lipogenic cell types as well as in many epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium, with th...

متن کامل

Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels.

Aquaporin-3 (AQP3) is a water channel expressed at the basolateral plasma membrane of kidney collecting-duct epithelial cells. The mouse AQP3 cDNA was isolated and encodes a 292-amino acid water/glycerol-transporting glycoprotein expressed in kidney, large airways, eye, urinary bladder, skin, and gastrointestinal tract. The mouse AQP3 gene was analyzed, and AQP3 null mice were generated by targ...

متن کامل

Altered expression profile of transporters in the inner medullary collecting duct of aquaporin-1 knockout mice.

Aquaporin-1 is the major protein responsible for transport of water across the epithelia of the proximal tubule and thin descending limbs. Rapid water efflux across the thin descending limb is required for the normal function of the countercurrent multiplier mechanism. Therefore, urinary concentrating capacity is severely impaired in aquaporin-1 knockout (AQP1 -/-) mice. Here, we have investiga...

متن کامل

Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta.

Deletion of AQP1 in mice results in diminished urinary concentrating ability, possibly related to reduced NaCl- and urea gradient-driven water transport across the outer medullary descending vasa recta (OMDVR). To quantify the role of AQP1 in OMDVR water transport, we measured osmotically driven water permeability in vitro in microperfused OMDVR from wild-type, AQP1 heterozygous, and AQP1 knock...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 291 2  شماره 

صفحات  -

تاریخ انتشار 2006